Абстрактный

Graph kernels and applications in protein classification

Jiang Qiangrong, Xiong Zhikang, Zhai Can


Protein classification is a well established research field concerned with the discovery ofmoleculeÂ’s properties through informational techniques. Graphbased kernels provide a nice framework combining machine learning techniques with graph theory. In this paper we introduce a novel graph kernel method for annotating functional residues in protein structures.Astructure is first modeled as a protein contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. In experiments on classification of graphmodels of proteins, themethod based onWeisfeiler- Lehman shortest path kernel with complement graphs outperformed other state-of-art methods.


Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

  • КАСС
  • Google Scholar
  • Открыть J-ворота
  • Национальная инфраструктура знаний Китая (CNKI)
  • CiteFactor
  • Космос ЕСЛИ
  • Библиотека электронных журналов
  • Каталог индексирования исследовательских журналов (DRJI)
  • Секретные лаборатории поисковых систем
  • ICMJE

Посмотреть больше

Индекс Хирша журнала

Flyer