Абстрактный

An improved method on rough set theory and application in prediction of pest attack

Tiecheng Bai, Hongbin Meng, Qingsong Jiang


In order to improve the forecasting accuracy of the occurrence period of insect pests, this paper puts forward a kind of improvedmethod of attribute reduction on rough set theory based on discernibility matrix. And, the forecasting model of insect pests is established by using improved rough set and BP network. The test results show that improved algorithm can reduce the complexity of computing, the number of conditional attribute reduction and the number of condition attributes after reduction than the original algorithm has obvious advantages. the average accuracy of the forecasting model reached to 90%.


Отказ от ответственности: Этот реферат был переведен с помощью инструментов искусственного интеллекта и еще не прошел проверку или верификацию

Индексировано в

  • КАСС
  • Google Scholar
  • Открыть J-ворота
  • Национальная инфраструктура знаний Китая (CNKI)
  • CiteFactor
  • Космос ЕСЛИ
  • МИАР
  • Секретные лаборатории поисковых систем
  • Евро Паб
  • Университет Барселоны
  • ICMJE

Посмотреть больше

Индекс Хирша журнала

Flyer